Transformer Language Model¶
Transformer Language Model¶
- 
class openspeech.models.transformer_lm.model.TransformerLanguageModel(configs: omegaconf.dictconfig.DictConfig, tokenizer: openspeech.tokenizers.tokenizer.Tokenizer)[source]¶
- Transformer language model. Paper: https://arxiv.org/abs/1904.09408 - Parameters
- configs (DictConfig) – configuration set. 
- tokenizer (Tokenizer) – tokenizer is in charge of preparing the inputs for a model. 
 
 - Inputs:
- inputs (torch.FloatTensor): A input sequence passed to encoders. Typically for inputs this will be a padded FloatTensor of size - (batch, seq_length, dimension).
- input_lengths (torch.LongTensor): The length of input tensor. - (batch)
 
 - Returns
- Result of model predictions. 
- Return type
- outputs (dict) 
 
Transformer Language Model Configuration¶
- 
class openspeech.models.transformer_lm.configurations.TransformerLanguageModelConfigs(model_name: str = 'transformer_lm', num_layers: int = 6, d_model: int = 768, d_ff: int = 1536, num_attention_heads: int = 8, dropout_p: float = 0.3, max_length: int = 128, optimizer: str = 'adam')[source]¶
- This is the configuration class to store the configuration of a - TransformerLanguageModel.- It is used to initiated an TransformerLanguageModel model. - Configuration objects inherit from :class: ~openspeech.dataclass.configs.OpenspeechDataclass. - Parameters
- model_name (str) – Model name (default: transformer_lm) 
- num_layers (int) – The number of lstm layers. (default: 6) 
- d_model (int) – The dimension of model. (default: 768) 
- dropout_p (float) – The dropout probability of encoder. (default: 0.3) 
- d_ff (int) – Dimenstion of feed forward network. (default: 2048) 
- num_attention_heads (int) – The number of attention heads. (default: 8) 
- max_length (int) – Max decoding length. (default: 128) 
- optimizer (str) – Optimizer for training. (default: adam)